Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 614(7948): 564-571, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755093

RESUMEN

Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.


Asunto(s)
Nucléolo Celular , Proteína HMGB1 , Humanos , Arginina/genética , Arginina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Síndrome , Mutación del Sistema de Lectura , Transición de Fase
2.
Mycorrhiza ; 31(3): 395-401, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33782833

RESUMEN

Rhizosphere microbiome is one of the main sources of plant protection against drought. Beneficial symbiotic microorganisms, such as ectomycorrhizal fungi (ECMF) and mycorrhiza helper bacteria (MHB), interact with each other for increasing or maintaining host plant fitness. This mutual support benefits all three partners and comprises a natural system for drought acclimation in plants. Cork oak (Quercus suber L.) tolerance to drought scenarios is widely known, but adaptation to climate changes has been a challenge for forest sustainability protection. In this work, ECMF and MHB communities from cork oak forests were cross-linked and correlated with climates. Cenococcum, Russula and Tuber were the most abundant ECMF capable of interacting with MHB (ECMF~MHB) genera in cork oak stands, while Bacillus, Burkholderia and Streptomyces were the most conspicuous MHB. Integrating all microbial data, two consortia Lactarius/Bacillaceae and Russula/Burkholderaceae have singled out but revealed a negative interaction with each other. Russula/Burkholderaceae might have an important role for cork oak forest sustainability in arid environments, which will be complemented by the lower drought adaptation of competitive Lactarius/Bacillaceae. These microbial consortia could play an essential role on cork oak forest resilience to upcoming climatic changes.


Asunto(s)
Micorrizas , Quercus , Bacterias , Sequías , Bosques
3.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471127

RESUMEN

Modifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in trees, such as Quercus suber L., is still not available. In this study, eight DNA methyltransferases (DNA Mtases) and three DNA demethylases (DDMEs) were identified in Q. suber. Histone modifiers involved in methylation (35), demethylation (26), acetylation (8), and deacetylation (22) were also identified in Q. suber. In silico analysis showed that some Q. suber DNA Mtases, DDMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. Additional phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork, and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here will be important for future studies exploring the role of epigenetic regulators in this economically important species.


Asunto(s)
Epigénesis Genética , Genoma de Planta , Quercus/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Quercus/enzimología , Quercus/crecimiento & desarrollo
4.
Front Plant Sci ; 6: 1195, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793200

RESUMEN

Quercus suber (cork oak) is a West Mediterranean species of key economic interest, being extensively explored for its ability to generate cork. Like other Mediterranean plants, Q. suber is significantly threatened by climatic changes, imposing the need to quickly understand its physiological and molecular adaptability to drought stress imposition. In the present report, we uncovered the differential transcriptome of Q. suber roots exposed to long-term drought, using an RNA-Seq approach. 454-sequencing reads were used to de novo assemble a reference transcriptome, and mapping of reads allowed the identification of 546 differentially expressed unigenes. These were enriched in both effector genes (e.g., LEA, chaperones, transporters) as well as regulatory genes, including transcription factors (TFs) belonging to various different classes, and genes associated with protein turnover. To further extend functional characterization, we identified the orthologs of differentially expressed unigenes in the model species Arabidopsis thaliana, which then allowed us to perform in silico functional inference, including gene network analysis for protein function, protein subcellular localization and gene co-expression, and in silico enrichment analysis for TFs and cis-elements. Results indicated the existence of extensive transcriptional regulatory events, including activation of ABA-responsive genes and ABF-dependent signaling. We were then able to establish that a core ABA-signaling pathway involving PP2C-SnRK2-ABF components was induced in stressed Q. suber roots, identifying a key mechanism in this species' response to drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...